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SUMMARY

A solution is presented for the elastic stress intensity factors at the

tips of a slightly kinked, partially closed crack in compression. The solu-

tion is accurate to first order in the deviation of the crack surface from a

straight line and is carried out using perturbation procedures analogous to

those of Banichuk [5], Goldstein and Salganik [61 and Cotterell and Rice 1-t
)\

for the problem of an open crack. Comparison with the exact solution indi-

cates that the asymptotic solution is accurate for values of the angle between

the straight crack and its out-of-plane kinks up to about 20 .

1. INTRODUCTION

Experiments on glass plates containing pre-existing planar through cracks

oriented at an angle to the direction of the axial compression have revealed

that the relative sliding of the faces of the pre-existing cracks does not

result in co-planar crack growth, bu" rather produces at the tips of the pre-

existing cracks small tension cracks which deviate at sharp angles from the

sliding plane [1-4]. These experiments are designed to be models for the pro-

pagation of cracks in rocks in compression. In this paper, we are concerned

with the calculation of stress intensity factors at the tips of the kinked

open extensions of a closed sliding through crack. The same method can be

extended to a curved crack with several closed sections. The solution ob-

tained is accurate to first order in the deviation of the crack surface from a

straight line drawn between the kink tips and is carried out using perturba-

tion procedures similar to those used in Refs. [5-9] for the problem of the

open crack. The results can be stated in terms of known solutions for a

"O single straight crack or a co-linear array of straight cracks.
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A complete solution to the problem of the sliding kinked crack has been

given by Nemat-Nasser and Horii [31, who used a continuous distribution of

dislocations to model the crack and its kinks. In order to find the stress

intensity factors, they solved numerically a singular integral equation for

the dislocation distribution. In contrast, we can avoid the solution of the

singular integral equation by using the results of the asymptotic analysis for

the stress intensity factors. However, the validity of the asymptotic solu-

tion is limited to small deviations of the crack surface from a straight line.

Comparisons with the exact solution given in Ref. [3] indicate that the first

order solution for the mode I stress intensity factor is accurate for values

* of the angle between the straight crack and its out-of-plane kinks up to about

200.

2. GENERAL FORMULATION OF THE PROBLEM

2.1 Formulation of the boundary value problem

Consider an infinite plate of a homogeneous, isotropic, linearly elastic,

brittle solid containing a curved crack on y - X(x) , with its tips at the

positions x * *a (Fig. 1). A uniform state of stress a a w and a c

is applied at infinity, with a < 0 and axy < 0 , where tension is

regarded as positive. The corresponding two-dimensional boundary value

problem is given by

,t ,i ,..

2 u1, + u1 ,1  in V (1)

. .,,.ao. . ,.. . ,.'€',',.'.- " .'..'.'.-'...............................................................-........-',...-.-'e ........
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O - Ci at infinity,(2

ynn(x, X) - ons(x, X) = 0 on the open portions of the crack, (3)

"ns(x, X) - Pcnn(x, X) on the sliding portions

un(x, X) - Un(X, X) of the crack, (4)

where orj , tij and ui  are the stress, strain and displacement fields in

the region V occupied by the body, Cijkt is the fourth order tensor of the

elastic moduli, ann and Ons are the normal and shear tractions at the

crack surface, un is the displacement in the direction normal to the crack

surface, p is the coefficient of friction, A,i is A/bx i  and the super-

scripts plus and minus denote the value of the indicated quantity on the upper

and lower surfaces of the crack. Note that the open and sliding portions of

the crack are, in general, not known in advance and their determination be-

comes part of the solution.

2.2 Small-parameter expansion

The essence of the approximation we use is that the solution to the pro-

blem with the curved crack is close, in some sense, to the solution of a

similar problem for a straight crack. In fact, we shall use the solution to

the following problem, involving a flat crack, as the leading or zeroth order

approximation in our expansion. Let a0 , ) and u be such that

0(0) 0)
Ji i

(0) (0) (0)
2e ij uij + u in V (5)

.. ." .. . . ..

• ,"/'~~~~~~~.."" ,L" ,,,, .,....,,.,...,.. . ,.,..%.?".--........-_.......... . -... • .. .......



4

and a(0) or at infinity (6)

a(O)(x, 0) - a(O)(x, 0) - 0 on the open portions of the crack, (7)yy XY

o(O)(x, 0) "a(0) (x, O) on the sliding portions
xy yy

U 0 o(u0) o(X ) J of the crack, (8)

where VI is the plane with a straight slit lying on the x-axis from -a

to a . If the slope of the actual crack, %'(x) , has order of magnitude

e << 1 at its largest, then we can seek a perturbation expansion in e for

the solution to the problem of the curved crack, such that

(0) (1) 2 (9)
a ( + a +0(E )(9

M E(0) + (1) + o(c2 ) (10)

u( 0 ) + (1) + 0( 2 )

where a( 1 )  1) and u(i )  are all 0(E) compared to the leading order

terms. We mention that X'(x) = O(e) also means that X(x)/a - 0(c) , be-

cause X(ka) - 0 . What remains now is the finding of the equations and the
'(1) (1) (1)

boundary conditions governing C and u We note at this

stage that our approach is identical to that of Cotterell and Rice [7], except

that they addressed the problem of a crack open everywhere. Furthermore, they

found their solutions and expressed their expansions in terms of

Muskhelishvili's [101 complex potentials. We prefer to work in terms of fun-

damental quantities, although it is entirely possible that the partially
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closed, slightly curved crack can also be solved by a variation of the complex

variable treatment of Cotterell and Rice [5].

We return now to the question of finding Y(1) 9 (1) and u( )  In

order to find the equations and boundary conditions governing a(1) , CO)

and (1)
and, we substitute the expansions (9)-(11) into equations (1)-(4).

We also use the fact that both X(x) and Xl(x) are 0(E) to write

expansions in e for the tractions and displacements on the crack surface y

X(x) . Using a tensorial transformation, we find that the normal and shear

tractions on the actual crack can be written as

ann (x, X) [ xxCX, X) + a (x, X)] +

1
+ [a (X, X) - ax, X)]cos2O - Cx, X)sin2@

2 yy Kx Y

a (x, K) - a (x, X)cos2g + - [a Cx, X) -a (x, X)Isin29ns (Y 2 'y

where e - X'(x) + 0Cc3 ) . Then, using a Maclaurin series expansion in e

for sin29 and cos26 , we find

Onn(x, a) yy (x, X) - 2X'(x) axY (x, %) + O 2 )

ans(x, ) = axy(x, X) + X'(x)[ayy(x, X) - axx(x, X)] + 0(C2)

If we now write Maclaurin series expansions in y for a , Cyy and xy

the last two equations become

xy (X, 0)
a nn(X, X) -ay(x, 0) -X(x) x - 2%'(x) a xy(x, 0) + 0(C2) , (12)

"'- %- --~~~~~. . .'....... . . ...-.....- ......--.--...- .-. ..-.--.... - .,..-- -..-----
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Cr(x r a(x, 0) - X(x) xx(X 0) + X'(x)[a (x, 0)-

a (.0)] +0(c) (13
~X4

where we have .also used the equilibrium equations bcaxy/8Y - bxxb and

* baGy/ay = --a7xy/bx

In a similar way we can show that

%n(x, ) u. - U(X, 0) + X(X)E yy (x, 0) -X'(x)uX(X, 0) + 0(C)* (14)

Using the expansions (9)-(11), equations (12)-(14) can be written as

b(0)(x0

a ~(x, X)=(0)Cx, 0) +,(CM (x, 0) - X(x) -o x,0
nnyy yy a

2k (0~() (X )+OC2 (15)
xy

xyc (xP x 0)
a Cs xI X ,( 0) + a (1 Cx, 0) - X(x) ox +

+ CX[~)x, 0) - C(O (x, 0)] + O(C 2 (16)

u n (x X) U(0) (x, 0) + uIl) Cx, 0) + XxE)x 0)-

(0) 2 (17)
-X'(x)u (x, 0) + OCE)

6x

Finally, substituting eqns. (9)-Cu1) and (15)-(16) into the boundary value

problem formulated in Section 3.1 (eqns. (1)-(4)), taking into account (5)-(8)

and separating zero and first order term~s, we find that a M and

P ) should be the solution to the follo~tng boundary value Orobe
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(1) ,J -J

jij

with

a ( 0 at infinity, (19)

a(1)(x, 0) = 0 on the open portions of the crack, (20)
yy

(1) (1)x+~) d aO (0)a (x,0) = pI)(x,O)+X(x) 0 (x,O)-P ° (xO)] -

- ~2 (0) (0) (O]fr li ,(1X'(x)[(1+2p )a (x,O)-a°(xO)l for IxI < a (21)
yy xx

u (1)x, 04 ) -uM (x, 0-)
y y

-X(x)[e(y)(x,o+ )-(0) (x,O-)]+X, (0)] (22)
yy yy x

on the closed sliding portion of the crack.

3. FORMULAE FOR THE STRESS INTENSITY FACTORS

Following Cotterell and Rice [7], let w be the angle of the crack tip

at x = a , given by w % X'(a) to first order. The normal (q..) and shear

(arw) stresses acting along the prolongation of the crack at a small dis-

tance r from the tip at x = a are obtained by setting X = wr + O(E3) =

wc(x- a) + 0( 3 ) into equations (15) and (16). So,



L,

- (0) ?ja(<O)cX 0)2
y y (xO)((x-a) ))

r"O ) ( X 0)

a M"(o).xO)-W(x-a) " ' +wl (O)(x,O)-GO)(x,0)+c(l)(x,O)+O( 2)yy xy xy ' ] I,

Then, the stress intensity factors can be calculated as

"% '+ (/Fi~)4 0) (1) + (1) +o0( 2), (23)KI =lim+ ( 2,/Tr c a ) = + KIw i e(3
~r O

K"- lim (,'2t ,) K + +, + ° (  , (24)

(0) (0 ) (o) ()
where ) II I )and Kii are the stress intensity factors for

the zeroth (eqns. (5)-(8)) and first order (ens. (18)-(22)) problems, and

;'a(0) (x, 0)
3/2 xy 1 0) - /2 (0 0)]

*'-. x {a xy

' o(°(x'° x~)Z~T ) (0)K"I) -w2- lim+{(x-a)3 /2  x + (x a x,) - cx x (x,)]}

x+a

Using the last two equations and a Williams (11] expansion for the near

. crack tip stress field, we can show that

=-.-. - -- z ,r' o 3 ..o (2)
= - K (25)1W 2 I(5

... :." ) 1 (0 )
and K ' w K (26)

II(W 2 1

* 0 . ... ... *
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From the formulation of the first order problem (eqns. (18)-(22)), it is

clear that this can be considered as the superposition of the following two

problem; problem (i) with a prescribed normal displacment and zero shear

traction on the sliding portions of the crack and with the rest of the crack

traction free, and problem (ii) with a prescribed shear traction and zero

normal traction everywhere on the crack face. Thus, knowing the solution of

the zeroth order problem (eqns. (5)-(8)) and having determined the sliding and

open portions of the crack, we can determine K1 from the solution of

problem (i) mentioned above.

As far as KM is concerned, it is obvious that only the prescribed

shear tractiono at the crack surface of problem (ii) mentioned above that have

opposite directions on the upper and lower surfaces of the crack have a non-

zero contribution to K(1) . With the definition
II"

A(x) - I [A(x, 0+ ) + A(x, 0-)]

KM) is known (e.g., (12]) to be

(1) I -)(x) € a + x d(

/In a -a xy a- x ,(27)

where, according to (21),

C ) W =pa l(x) + X(x)d a cy (x) 1,CIO(x) 1xy y dx -xx XY

-X'(x)r(I + 2 i 2)C0)(x) -(0)(x)J (28)
yy xx

On the other hand, it is possible that the stress field of the zeroth order

problem, ( ) , has the characteristic -_ elastic singularity at several
/r

• .,. ' ' - ' . . .,.'.". - , .I, . .-,, -,. ,.- i ",". " , " ,," ",', ,"-" "" " " , .% ;" '. .. .
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points in the interval lxi 4 a ; since derivatives of a with respect

to x are involved in the formula for a) (eqn. (28)), non-integrable
xy

singularities will appear in eqn. (27). To overcome this difficulty, we

assume, for the moment, that the stress components 0J 0) are all

bounded and differentiable with respect to x in the interval lxI < a ; this

makes ocl)(x, 0) also bounded on the crack face. In the case wherexy
'' (0)(x 0 are singular at some point in the interval [x a , the singu-

(0)

larities are removed by replacing a () x, 0) by bounded functions that

- reduce continuously to zero (or any other value that makes (0)X, 0)

continuous) over distances closer than a small distance 6 to the point where

the singularities appear. Later it is shown that it is possible to let 5

tend to zero, i.e., effectively to remove the restriction of bounded and
-'-'"-" (0),

differentiable ( 0x, 0).

We return now to the calculation of K With the above continuity

.- -' (0)
assumptions on ij we can integrate by parts eqn. (28) to find

Ar -a*K(I) 1±~ f jp-"() '[(1 + 2.-)a -a ) +

-a yy

!+ [-X + X(a)]( O) _ a+x dx- (29)
S xx xy a - x

.° a
- r ,(0) PC (0) aX + (a x)X'(a) a x dx

max -a~ Xxy 2  a (a 2  a +x

It should be noted that aX(x) + (a-x)k'(a) [ak(x) + (a-x)%'(a)] 0

at x = a , so there is no divergence at the upper limit of the second inte-

gral in (29). It can also be seen that an integrable singularity can exist in

o. -(0)a. j (x) , provided it is not at x = *a , as waq also noted in [7]. Specifi-

cally, in terms of our earlier discussion, 8 can be shrunk to zero and in

- - -** -* - - -



that limit, the result oE equation (29) for KI approaches the result

obtained by inserting directly into (29) the singular, actual a .O)(x) . Such

considerations, based essentially on the fact that the final result of equa-

(1)--~.-.-...~ -. r -

tion (29) for K )II contains a---ij)(W only (and not derivatives with respect

to x), allow us to conclude that (29) is valid for all integrable --)

(i-e., not necessarily bounded or continuous).

We mention again that part of the solution to our problem is the finding

of the sliding portions of the crack. Having found the sliding portions of

the crack and the solution of the zeroth order problem, we can proceed to

solve the first order problem and use the formulae given in this section to

find the first order correction to the stress intensity factors.

(4. THE PROBLEM OF THE KINKED CRACK

cnsiA particular case of the curved crack is the kinked crack shown in Fig.

2. The shape of the kinked crack is given by

S(x + a) for -a < x -b

b a

t (x) f mx for l ( xe bi e

to..alo bmb (x l a)-e h for b < x a le

- In this case, w = V(a) + 0(W)  -mb + ( 3)
b - a

Following our previous discussion, we assume that both m and

iiiiare O(E) , which is equivalent to assuming that X'(x) is O(E) . We x

mention again that we are concerned with the case where both i and f

Sar te i and so, it can be assumed that the portion of the crack in the

interval ax d b remains closed during the application o the load. Thus

sbg

ft-i~

fidtefrtore orcintotesrs ntniyfcos

4. TE 'BE0_F 2EKIKD RC

A paticuar.cse.f..h.curd-cackis-te kik.dra.,shon-inFig
2. Tesaeo h ikdcaki gie by .. •..- '.U .. .,= .,,,

.-. . . ... -.. .. .:.:.: . _ ... .: : :: ' . . :....m. .b . -
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the sliding portion of the crack is the interval lxi < b and the open por-

tions are the intervals b 4 xi 4 a . Of course, there is a possibility that

the applied stresses a i and the orientation of the kinked crack are such

that the whole crack remains closed and does not slide. To check whether this

happens, we can solve the problem assuming that the crack opens in the inter-

val b 4 lxi 4 a; if the calculated KI at the tips of the kinks is

negative, the tip of the kinks remain closed and the assumption that the crack

opens in the whole intervals b < 1Ix 4 a is in error.

4.1 Solution of the zeroth order problem

The zeroth order problem can be considered as the superposition of the

four problems shown in Fig. 3, where F(x) is the distribution of the

(0)a 0 (x, 0) stress component of problem no. 1. We note that for problem no. 4
YY(0

the shear stress on the crack face, 6(0)(x, 0) = iF(x) , opposes the relative
Xy

sliding of the crack faces. The quantities of interest for each of the four

problems mentioned above are given in the following. In the solutions pre-

sented in the rest of this section, conditions of plane strain are assumed; in

Vorder to get the plane stress solutions we simply replace v by 1+ v

4.1.1 Problem no. I

The solution to tais problem has been given by Erdogan [5] and is as

follows

CO) (x, 0) 2 2[a 2 E(k) x2 ] =F(x), (30)

/(b 2 - x 2)(a - x 2

(a (x, 0) F(x)- ,

xx yy

(0)a (X0) =0
xy
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(0) + (0))!!~ u ° (x,o) -u (° (x, 0-),

xx

E(0)(X, 0+) -(0)(x, 0 for Ix < b

(x0) -- - for b < x < a

where K(k) and Ek) are the complete elliptic integrals of the first and

second kind respectively and k = /1 - b2/a2

Also, the stress intensity factors for this problem are

I k K(k)

and K 0.'.%"II

Problem no. 2 consists of a plane strain tension. The solution to this

problem is quite obvious; therefore we proceed to problem no. 3.

4.1.2 Problem no. 3

The solution to this problem is known (e.g., [12]) to be

a()(x,) CO 2x
xx xy 2 2

/a -x

(0

S()(x, 0) y a (( x, 0" ) - 0
yyxy

...-i --- .
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.d.

E(O)(x, V) , v x
yy G 2

/a - x

and u0)(x, o) = - 2M /a 'a2 - f for lxi < ax G

.4

--' where G is the shear modulus of the material.

In addition,

(0)O) =0 ,

and K(0() a / n oII xy

4.1.3 Problem no. 4

The solution to this problem is derived in Appendix 1 and is as follows

a()(x, 0 )  *Pay 2xxx 2

(0)(,o o, Y/a

0 (x, 0) 0,
yy

(0)( (x, 0) = pF(x)xy

XYX
E(0)(x, 0 ) = v - x

yy G
a2 _ x2

/a -x

OCx 0x) -X(1 - v) - /a2 - x2  for lxI < b

and

°'° '

% ". % % " • %",- % ," . ." %"%° . " ..- . . ...-. .- . '..' ., ' . "... . . . . . . . . .. . . . . . . . . . . . ... "... ... .... . . .-. ......-. -...,.... . .-...
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,( x , -) 0 -° I (x2 a 2 E-k)

/(x2 b 2 )(a2 x 2 /a 2 x

for b < lxI < a

Also,

(0)
K1

K(O) pa yyc r I - k E~k)]

k K(k)

" 4.1.4 Superposition

Superimposing the solutions of the four problems shown in Fig. 3, we find

the quantities of interest of the solution to the zeroth order problem to be

a x) F(x)-o + o , (31)xx yy xx

" -- 0 =F(x) , (32)
yy

-(40)""(x) = pF(x) , (33)xy

(0) + (0) U 'y -c (x, 0) - (x, 0) =2v x'y -- yy x (34)yy yy G 2

4a

u(0)(x, 0 + (x, 0-) = 2(1 - v) -/a 2 
-x (35)

O x G

for lxi < b ; and
OS.

0j 0
.. (°x) =-a + C , (36)""'-xx yy xx

. ', .'- ". .. ,. .' '. .- '. ' o . - .-. A.° . ". - .. . ,, . .-. - - - - - " - . , - • . . • . , " ' . "
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W-0)x a -0)(x) 0 (37)
Iyy xy

for b < Ix I < a

Also, the stress intensity factors for the zeroth order problem are given

by

S k K(k) 38)

(0) /ia+p(0)

4.2 Stress intensity factors for the first order problem

As discussed in Section 3, the first order problem can be considered to

be the superposition of the two problems shown in Fig. 4.

The mode I stress intensity factor K is determined by solving

problem no. I in Fig. 4, which is actually the problem of the opening of a

finite crack by a rigid wedge. The general solution to this problem has been

given by Markuzon [14]. Taking into account eqn. (22) and the solution of the

zeroth order problem derived in the previous section, we find that, for our

particular case, the shape of the wedge, h(x) , is given by

2h(x) u0'(1(x,0+)-u0 )(x,O) = 2m XX (1-v)a2-x x b • (40)

y y G 2 _ '
/a x

Using the above formula for the shape of the wedge and Markuzon's [14]

solution, we find the mode I stress intensity factor to be (see Appendix 2)

3 2
- m - (2 - v)k + (I - 2v + 2C)k + v

K )  -( - 1 V 2k 2  (41)

n"o o. - . . . . .
%"-'o-'o,: y -. '-, -. % '.- ,,..-, -.-. ,...-..-,,- ,, .- ,,%'-,' . -.. ,;..'..-..' ,'-,',...: .-. .... -,; .-. :,-'.. %.%-...-:.,.- ..--,--.- ,, .,---,, -....-..
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where

4'. 3
1 {-K(k)k + [(I + 2v)K(k) - 2E(k)]k + 2v +

+ a x/x 2  b2  a/a2  b2  dx
+vaf 2 2

b a -x (a2 x 2 )(x2 b 2

We proceed now to the calculation of the mode II stress intensity factor

for the first order problem, K(  which can be determined either by solving

problem no. 2 in Fig. 4 or, equivalently, using eqn. (29). We note that

"O(x) 40)(x) and a W(x) all have the characteristic singularity' xx W Oyy , xy - ngart

at x = *b ; but as discussed in Section 3, eqn. (29) for KI' can still be

used, provided that the singularities are integrable, which is indeed the

case. So, using the solution of the zeroth order problem derived in the pre-

vious section and applying eqn. (29), after some lengthy, but straightforward,

integrations we find

K = (1) ( - C ) f -- _ 2a s-1

K(1) pLK( + (a -ti b (1 -Lasin1b )+ 211 2 /ar-a +
IIyy -a ( b yy

#2 Eam ~(k) [1 k- 2 )E(k) (2
+ ~{ ana -1 5 2 + (I + 3p2 [

+ 2k {]22 (42)

where K is given in eqn. (40).

5. DISCUSSION AND COMPARISON WITH THE EXACT SOLUTION

The obtained asymptotic solution for the stress intensity factors at the

tips of a kinked crack is of the form

K K(0 ) 3 w K(o + + o(E 2)ZI K ) 2 IL II
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K "K( 0 ) ( 0) () 0W

wher (0) (1) a ( ~1)
where O) K(0 1) and K II are given in equations (38), (39),

(41) and (42) respectively. Equations (41) and (42) show that KM andm

K i) depend on Poisson's ratio v . This means that they have differentII

values under plane strain or plane stress conditions. On the other hand, it

is known that, in the absence of body forces, the stress intensity factors for

traction boundary value problems are the same under plane strain or plane

stress conditions and independent of the elastic constants. The reason that

v enters the expressions of the asymptotic solution for the stress intensity

factors is that the displacement field of the zeroth order problem, which

depends on v , was used to formulate the first order problem. As a result,

the in-plane components of the first order correction to the stress field and

the corresponding corrections to the stress intensity factors depend on v

However, numerical calculations of K I)  and K show that their depen-

dence on v is very weak and that their values for plane strain and plane

stress conditions are practically indistinguishable, which validates the first

order correction.

Next, we apply our results to the problem of a infinite plate containing

a kinked crack oriented at 360 to the overall compression (Fig. 5). The exact

solution, given in Ref. [3], and the asymptotic results for KI are plotted

in Fig. 6 versus the angle between the straight crack and its out-of-plane

kinks, 0 , for several values of the ratio of the length of the kink, I , to

the length of the straight crack, c . In general, the region of accuracy of

the asymptotic solution depends on both 1/c and A , because the values of

m and w in our analysis, which must be small for the asymptotic solution to
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be valid, depend on both 1/c and 6 . But, roughly speaking, the asymptotic

solution is seen to be accurate for values of 0 up to about 20. Unfortu-

%" nately, the values of KII for small values of 6 are not given in Ref. [3];

so, comparisons of the asymptotic result for K1I with the exact solution

were not possible.

6. CLOSURE

A first order solution has been obtained for the stress intensity factors

at the tips of the kinked extension of a sliding crack. The validity of the

asymptotic solution is limited to kinked cracks with small deviations from

straightness. There are several situations where this deviation is indeed

small. As an example, consider the case of a glass plate or a rock block con-

tamning several small cracks at different orientations. Under the application

of a compressive load, the cracks with an angle to the direction of compres-

sion, y , greater than yc = tan - will remain closed and only those

with y < yc can, possibly, slide and propagate. It is also known ([1]-[4])

that these cracks tend to propagate towards the direction of compression. So,

". '-! if the coefficient of friction, p , is very high (which makes yc small) the

crack propagation will create kinked cracks with small deviations from

straightness. For situations like these, the asymptotic results can be used

to determine the stress intensity factors and to make predictions for the

direction of further propagation. In addition, fatigue due to non-

- proportional loads can cause the development of cracks that are not straight

and are partially closed, although open at the tip. For cases where the

deviation from the straight line is small, the methods devised here can be

used, although a criterion for determining where the closed portions lie would

have to be developed.

.-.. . . . . . . . .. . . . .U,." - . . .. ,- '° -. % .. * U "% - % * " .. -.
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APPENDIX 1

The problem no. 4 in Fig. 3 is formulated in terms of the complex

potentials * and 4, of Muskhelishvili [10). The stresses and displacements

can be expressed as

+ an 210'(z) + *'(z)] , (43)

.. yy xx + 2iaxy 2[z "(z) + ,'(z)] , (44)

2G(ux + iuy) = ec*(z) - z,'(z) - €(z) , (45)

x ym

where K - 3 - 4v for plane strain and K = (3 - v)/(1 + v) for plane

stress, the overbar denotes the complex conjugate and prime stands for

" "differentiation with respect to z = x + iy

Introducing the analytic function

N(z) = zs'(z) + q'(z)

eqns. (43)-(45) can be written as

axx + a - 2[0'(z) + 0'(z)] , (46)

yy - + 2ia = 2[(z- z)%"(z) - Q(z) - *'(z)] , (47)

2G(ux + iuy) " O(z) - (z - z) 0'(z) - Q(z) • (48)

?" i.'-', ' .'': ''$ " '..'''x - y- . , " . • " . . - . - . . . . - .. ..
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For a prescribed shear traction axy(x, 0) along the crack face, it is

known (e.g., [121) that

£ a 2 2 dx
*'(z) -Q'(z)=-- _ f a (x, 0) /a - x (49

2% z2  a a2 -ax-z

In our problem

J (F(x) for lxi < b ,
o~x., 0)- for (50)

0 for b < xI < a

where F(x) is defined in eqn. (30). Substituting (49) into (50) and

carrying out the integration we find

51!c tz 2  2 E(k)lV'(z) (Z') a - a__ ,_2  - Ia
2IyyL K(k) 2 2 2 22

/(Z - a2)(z 2 - b2 /z - a

Finally, using eqns. (46)-(48) and the definition

KI + iKII = lim+ /2n(x - a) [a yy(x, 0) + ia xy(X. 0)] (51)
x+a

we find the results shown in Section 4.1.3.

APPENDIX 2

The solution to the problem of the opening of a finite crack by a rigid

wedge has been given by Markuzon [14]. In terms of Muskhelishuili's [10]

complex potentials, the solution is shown to be

..

.o - * ***.+

S 5o...

"°,
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2G fb dli dx Co
(Z)X(z) x x- z X(z) ' (52)

71z Q'z (K + 1) -bZ dx X x z XZ

-. where h(x) is the function determining the shape of the wedge of length 2b

" 2  2 2 z2
(see Fig. 4), X(z) /(a- z )(b - z2 ) and the constant Co  is determined

from the equation

)'" a _b
*,-. 1 [ f'h /(a2  )(b -t ]dx

b7C 2 2 - dtb (a2 x2)(x 2 -b 2)

- + 1 K(k) -h(b)
2G a o

-. 6

As discussed in Section 4.2, the shape of the wedge for our problem is

given by

a - v-a 2 2 2
h(x) =m G ' IxI < b (53)

"a"_=_ x 2G / a2 -x I

Substituting (53) into (52) and carrying out the integrations, we find

2w2 ax -ay

(Z= '(z) = ma xy yy
22( - v)2 2

(z a )(z2  b2 )

-S. *-.

[z / z _2  b b 2 _ a a 2  b b 2 + z2 z/z 2 -b 2  2va2 + b 2

-2 2 +2 - 2 +
z - a a 2a

where

03
C-.-L.1I -K(k)k3 + [( + 2v)K(k) - 2E(k)lk + 2v-: -:::C = ~- -- -2k +

Sx/x2 b a/a2  dx

b a - x -
2)(x 2  b2 )

.14.

-" - -
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Finally, using eqns. (46), (47) and (51) we find the stress intensity factor

to be

m k 3 -(2-Ok 2  (1-2v 2C)k v
1-vY 2k2

00i
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Fig. 1. Infinite plate containing a curved crack.

Fig. 2. Infinite plate containing a kinked crack.

Fig. 3. Superposition used in the solution of the zeroth order problem.

Fig. 4. Superposition used in the solution of the first order problem.

Fig. 5. Infinite plate containing a kinked crack oriented at 360 to the

overall compression.

Fig. 6. Stress intensity factor at the tips of the kinked crack shown in Fig.

5 (= 0.3).
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